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Problem FoL.1 . . . tough run
With what velocity should you run at the equator in order to weigh as much as possible (e.g.
have the maximum possible weight, not mass) if you can choose the optimal direction?

Matěj’s healthy method of gaining weight.

It’s best to run against Earth’s rotation, i.e. westwards, with the exact velocity that causes
centrifugal force to be zero. The velocity should be equal and opposite to the velocity of rotating
Earth at that point.

v = ωR = 2πR
T

.= 464 m·s−1 ,

where T = 24 h and R = 6,380 km.

Matěj Mezera
m.mezera@fykos.cz

Problem FoL.2 . . . electrobell
Mirek’s colleague bought a $1 “small science” apparatus at a flea market. It’s a small box with
two wires. The ends of these wires are almost connected, leaving a small distance l between
them. If we connect the wires to a powerful voltage source, we can create a short electric arc.
The sound of this discharge is quite loud, that’s why Mirek’s colleague uses this device as
a lunch bell. Find the largest possible distance (in micrometres) of the wires that allows the
creation of an electric discharge for a source with peak voltage 325 V. The dielectric strength
of air is D = 3 MV·m−1. Mirek was looking forward to lunch.

The maximum voltage in the circuit is U = 325 V, so the largest distance between wires allowing
the creation of a discharge is

l = U

D

.= 110 μm .

Let us note that the presence of dust, shape of electrodes and other effect could increase this
distance. For the purposes of the question, we omitted the Tesla coil inside the real device.

Miroslav Hanzelka
mirek@fykos.cz

Problem FoL.3 . . . jump
The mass of the average human is 80 kg. How many people would need to gather in one place
and jump 1 m up at the same time in order to shift Earth’s center by 0.1 pm?

Matěj was jumping on a trampoline.

The common center of mass of Earth and the people doesn’t move. At the moment when all
people are 1 m above Earth’s surface, the center of Earth should shift by 0.1 pm.

N · 1 m · 80 kg .= 0.1 pm · 5.97 · 1024 kg ,

where we utilised the approximation 1 m − 0.1 pm ≈ 1 m.
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N
.= 0.1 pm · 5.97 · 1024 kg

1 m · 80 kg
.= 7.5 · 109

That means we’d need the whole population of Earth.

Matěj Mezera
m.mezera@fykos.cz

Problem FoL.4 . . . there’s a current flowing

R1; U1

R3

R2

I =?What is the total current I flowing through the depicted circuit?
Resistances in the diagram are R1 = 124 Ω, R2 = 263 Ω and
R3 = 454 Ω. Voltage on the first resistor is U1 = 14.8 V.

Enter the result in miliamperes.
Karel wanted you to review electrical circuits.

Let’s denote the voltages and currents on each resistor as Ux and
Ix. Ohm’s law applied on the first resistor gives the current

I1 = U1

R1
.

Charge preservation (or Kirchhoff’s first law) tells us that I1 = I2. This relation can be used to
obtain the voltage on the second resistor

U2 = R2I2 = R2I1 = R2

R1
U1 .

According to Kirchhoff’s second law, the total voltage on the upper branch is equal to the
voltage on the lower branch. This leads to

U = U3 = U1 + U2 = U1

(
1 + R2

R1

)
.

Now we can finally express the total current

I = I1 + I3 = U1

R1
+
U1

(
1 + R2

R1

)
R3

= U1

( 1
R1

+ 1
R3

+ R2

R1R3

)
.

Plugging in the numbers gives I .= 221 mA.

Kateřina Smítalová
katka@fykos.cz

Problem FoL.5 . . . a mirror problem
There’s a 10 m wide, 5 m long rectangular room. In the middle of one of the longer walls, there’s
a mirror with width 1 m at eye level. Mikuláš is standing in front of the middle of the mirror at
a distance 1 m from the mirror. What part of the room’s area (in %) will he see in the mirror?
Neglect the fact that part of this area won’t be visible because he sees himself in front of it.
Note: when computing the area, consider only the horizontal cross-section of the room at eye
level. Katka was looking out of a window during a lecture.
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It’s clear that we’re mainly interested in the two rays reflected from the mirror’s border. Let’s
denote the distance of Mikuláš from the mirror by v and the half-width of the mirror by z.
According to the law of reflection, we know that

v

z
= y

x
,

where y is the length of the room and x is the perpendicular distance between the point of
incidence of the ray (at the mirror) and the ray’s intersection with the wall behind Mikuláš.
In this case, x = 2.5 m. It follows from the geometry of the problem that the ray will end up
on the back wall of the room and separate the visible and invisible part of the room. After
partitioning the visible part and summing up all areas, we find the area S of the visible part

S = 2zy + 1
22xy = zy

(
2 + y

v

)
,

numerically S = 17.5 m2. The total area can be computed by simply multiplying its side lengths,
numerically Sp = 50 m2. The ratio of visible to total area can be found simply as

p = S

Sp
.

We can see that the result is p = 35 %.

Kateřina Smítalová
katka@fykos.cz

Problem FoL.6 . . . supercooled water
There’s a container with supercooled water at temperature t = −8 ◦C. Initially there are no
condensation nuclei, so it remains in the liquid state. Find the mass percentage of this liquid that
will freeze after inserting a condensation nucleus. Neglect the heat capacity of the container.
Use the specific heat capacity of water c = 4,180 J·kg−1·K−1 and the latent heat of fusion
l = 334 kJ·kg−1.

Remember: This is an easy problem, so keep it simple.
Karel attended a talk by doc. Bochníček on the properties of supercooled water.

Let’s break this problem down from the viewpoint of heat balance. The supercooled water will
start freezing the moment we insert condensation nucleus in the container and heat will be
released during the fusion process. The whole volume of water (liquid or solid) will receive this
heat and warm up to 0 ◦C. The heat balance can be written as kml = mc∆t, where m is the
mass of water (cancels out), k is the fraction of water turned into ice, c is the specific heat
capacity fo water and l is the latent heat of fusion of water. The left-hand side stands for the
heat released by freezing water. The right-hand side stands for the heat received by the whole
volume in order to heat up to 0 ◦C. Rearrangement of the heat balance equation leads to

k = c∆t
l
.

For given values we obtain k = 10 %.

Kateřina Smítalová
katka@fykos.cz
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Problem FoL.7 . . . ecological
Imagine that electricity could only be produced by burning wood. Let’s assume we have just
enough wood to produce the amount of electricity necessary to power a tablet for one hour.
How many sheets of paper could be made from this wood instead of burning it? The heating
value of wood is 13 MJ·kg−1. During production, distribution and storage of electricity, 80 %
of the energy (heat) is lost. The tablet is fueled by a 3.6 V battery with current consumption
of 0.5 A. One sheet of paper weighs 5.0 g and double of this mass in wood is needed for its
production. Erik is saving the forests.

One sheet of paper of mass m requires 2m of wood for its production. Heating value of wood
is H. Heat can be transformed to electricity with the efficiency of η = 0.2. Overall we obtain
2mHη of electrical energy from one sheet of paper.

The tablet consumes electrical energy UIt, where U is the voltage, I is the current and t is
the time of one hour. The number of sheets of paper n necessary to keep the tablet running for
one hour is

n = UIt

2mHη
.= 0.25 .

Thus we can say that a tablet would consume quarter of a sheet of paper per hour.

Jáchym Bártík
tuaki@fykos.cz

Problem FoL.8 . . . headshot
We fire a projectile with mass m = 0.502 g from an air gun with mass Mp = 5 kg. The projectile
impacts a cuboid with mass M = 182 g, which slides and stops at distance s = 4.8 cm. The
friction coefficient between the cuboid and surface is f = 0.3. Determine the muzzle velocity of
the projectile.

Assume that the velocity of the projectile at the moment of impact is the same as the muzzle
velocity and that the cuboid is far enough to be unaffected by gases emitted from the air gun.
The cuboid lies on a horizontal surface.

Adapted by Karel from the article Fyzika jako zážitek (“Physics as an experience”).

We can discard the mass of the gun, since we aren’t computing the projectile’s velocity based
on recoil. However, the remaining parameters are relevant. First of all, we’ll use the fact that
we’re dealing with a perfectly inelastic collision of the projectile and the cuboid. That means
energy isn’t conserved, but momentum is; both objects merge into one and start moving with
a common velocity w after the collision. Let’s denote the muzzle velocity of the projectile by v.
Then we get

mv = (m+M)w ⇒ v = m+M

m
w .

Of course, we don’t know the initial velocity of the cuboid+projectile after the collision w.
However, we know that due to friction, the cuboid will be moving with acceleration (decelera-
tion) a = fg, where g is the acceleration due to gravity, until it stops. The formula for distance
traversed during motion with constant acceleration is the well-known s = at2/2; for velocity,
it’s w = at. Expressing the time t, we get

s = 1
2
w2

fg
⇒ w =

√
2fgs .
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All together, the muzzle velocity is given by

v = m+M

m

√
2fgs .= 193 m·s−1 .

The muzzle velocity of our projectile is therefore 193 m·s−1. We could neglect the fact that
its mass increases the cuboid’s mass in the collision – the result would be the same to three
significant figures. We can’t neglect the projectile’s mass before the collision, though (that
would give it zero momentum).

Karel Kolář
karel@fykos.cz

Problem FoL.9 . . . transportation acceleration
So one day Karel was casually riding the Prague metro and saw an information panel about
trams. It said that the power of a tram car increased tenfold in the last decades. How many
times did the maximum speed increase, assuming their weight didn’t change and the resistive
force are proportional to the second power of tram’s velocity? In other words, we want to know
the value of k = v1/v0, where v0 is the original maximum speed and v1 is the current one.

Karel saw a tram praising ad in the Prague metro.

The instantaneous power can be expressed as P = Fv, where F is the force exerted by the
engine and v is the instantaneous velocity. When tram reaches its maximum speed, v can be
viewed as a constant, therefore, the resistive force is also constant. Expression for the resistive
force is F = Cv2, where C is some constant. For a non-accelerated motion, the resulting force
is zero. Thus the power can now be expressed as P = Cv3. According to the information panel,
the ratio of new and original power is P1/P0 = 10. Now we are ready to find the ratio of new
and original maximum velocities

P1

P0
= Cv3

1

Cv3
0

⇒ k = v1

v0
= 3

√
P1

P0
= 3√10 .= 2.15 .

Trams in Prague can achieve 2.15 times greater velocity.

Karel Kolář
karel@fykos.cz

Problem FoL.10 . . . closer than it seems
According to ground-based observatories on Earth, the parallax of the star Proxima Centauri
is p = 0.77 arcsec. There’s a planet orbiting this star at distance r = 0.05 au (assume its orbit
is approximately circular). Let’s imagine there are intelligent beings living on this planet (let’s
call them Centaurs) and they measured the parallax of our Sun. The Centaurian definition of
the parallax is, of course, based on their home planet’s orbit. How large is the parallax they
measured? Enter the result in arcseconds.

Mirek was pondering about extraterrestrial physical units.

The parallax of a star is (in a simplified way) defined as the following: let’s construct a trian-
gle between Earth, the Sun and the observed object. The parallax is the angle at the observed
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object–vertex. Since this angle will always be very small, we may use the small angle approxima-
tion (often called paraxial). If the orbital radius of the exoplanet corresponds to five hundredths
of Earth’s orbital radius, the parallax measured by the Centaurs will decrease proportionally,
so it will be p′ = 0.77 arcsec/20 = 0.0385 arcsec.

Miroslav Hanzelka
mirek@fykos.cz

Problem FoL.11 . . . soda
How many times would the volume of a soda increase if all dissolved carbon dioxide suddenly
turned to gas? A typical soda contains 8 g·dm−3 of carbon dioxide. Consider the situation at
25 ◦C, 101.3 kPa. Štěpán spilled his drink on himself.

The amount of carbon dioxide contained in the soda in moles is

n = m

M
,

where m is the mass and M is the molar mass. In an ideal gas the amount of substance can be
expressed as

n = V

V0
,

where V is the volume of the gas and V0 is the molar volume at given conditions. The equation
of state leeads us to V0 = RT/p = 24.5 dm3. Therefore the volume of gas is

V = V0m

M
.

For one liter of soda we get V = 4.45 dm3 of carbon dioxide gas. The total volume (liquid plus
gas) is then 5.45 dm3, so the volume increased by the factor 5.45. The initial volume of dissolved
carbon dioxide was neglected.

Štěpán Stenchlák
stenchlak@fykos.cz

Problem FoL.12 . . . don’t fall!
The two-wheeled vehicle segway maintains its vertical orientation by accelerating or decelerat-
ing. Neglect the mass of the vehicle and consider the driver a point with mass 65 kg at a distance
r
2 = 1 m from the axis of rotation. What power does the motor need to provide when the segway
needs to balance a tilt by α = 10◦ to the front at speed v = 10 km·h−1? Use g = 9.81 m·s−2.

Michal was wondering about the new road signs.

Imagine the vehicle as a rod with length r that’s tilted from the vertical by the angle α. The
system is moving non-inertially (the vehicle makes turns, accelerates, decelerates...), which is
why there’s an inertial force F1 acting on its center of mass (at distance r

2 from the axis of
rotation). The force of gravity F2 acting on the driver causes torque

M2 = F2
r

2 sinα = mg
r

2 sinα .

7

mailto:mirek@fykos.cz
mailto:stenchlak@fykos.cz


Online Physics Brawl 7th year November 29, 2017

Since the driver remains tilted by the same amount all the time, the net torque on the vehicle
must be zero, so (with respect to the axis of rotation)

F1 cosαr2 = mg
r

2 sinα .

Distance r/2 cancels out and we get

F1 = mg tanα .

Now, from the point of view of the inertial system of the driver, we can identify the the inertial
force as the force exerted by the motor. This force acts in the system the non-inertial system
too, but it doesn’t cause any torque because it acts at the axis of rotation. And when we know
the force of the motor, the power can easily be computed using the well-known formula

P = F1v = mvg tanα .

Plugging in the numerical values, we get P .= 312 W.

Kateřina Smítalová
katka@fykos.cz

Problem FoL.13 . . . shoot it down!
What’s the probability (in percent) that if we shine a laser vertically upwards for a short time,
the ray hits a passenger airplane? The average horizontal cross-section of an airplane is S =
= 300 m2 and at each moment, there are approximately ten thousand airplanes in the air.
Assume that airplanes are distributed homogeneously across the sky and fly at heights much
smaller than the radius of Earth. Matěj read about a terror attack.

We may compute the probability as the ratio of total cross-section of all planes and Earth’s
surface area.

p = 10,000S
4πR2 = 5.9 · 10−9 .

The probability that the laser hits an airplane is 5.9 · 10−7 %.

Matěj Mezera
m.mezera@fykos.cz

Problem FoL.14 . . . Young’s thermal stress
A copper rod of length l = 12.3 cm and cross-sectional area S = 1.02 cm2 is fixed so that its
length cannot thermally increase. The linear coefficient of thermal expansion for copper is α =
= 1.70 · 10−5 K−1 and Young’s elastic modulus is E = 117 GPa. Find the force exerted by the
rod on the holder due to thermal expansion. Give the result for ∆T = 15.0 K and only for one
end of the rod. Karel combined formulas.

The idea behind this is problem is simple. The rod’s length should increase, but it cannot, so it
will deform. The deformation is due to force exerted on the rod by the holder and according to
Newton’s 3rd law, the rod exerts force of the same magnitude on the holder. This magnitude
F can be expressed as F = Sσ, where σ is the stress in the rod and S is the area of the contact
surface, i. e., the cross-sectional area of the rod; radial expansion is negligible. The defining
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relation of Young modulus is F = SEε, where ε is the strain. Assumption of linear dependence
between length and temperature allows us to express

ε ≈ ∆l
l

= (1 + α∆T )l − l

l
= α∆T ,

where ∆l is the absolute elongation. Combining all formulas we get

F = SEα∆T .

The numerical result is F = 3.04 kN.
Kateřina Smítalová

katka@fykos.cz

Problem FoL.15 . . . rubber bands
Consider two rubber bands (here, a rubber band is a single strip of rubber) with equal stiffness
k and equal rest length. One of the bands breaks if acted upon by a force greater than F1. The
other band breaks if acted upon by a force greater than cF1, where c > 1 is a constant. We
take a weight and hang it from both rubber bands in parallel so that they don’t break. Then,
we slowly and continuously increase its weight (so that it does not oscillate) until the first band
breaks. What’s the minimal value of the constant c for which the second band doesn’t break
afterwards? Michal was shooting rubber bands at people.

According to the problem statement, the first rubber band breaks when there’s a force F1
acting on it. It follows that the weight must be acting with total force due to gravity 2F1 at the
moment when the band breaks. At this point, the first band breaks and the weight is hanging
only on the second band, which isn’t in its equilibrium position.

We can view the resulting situation as a harmonic oscillator, which is initially in the position
with maximum upwards displacement. The equilibrium position of this oscillator is a certain
distance ∆h below its current position. As is well known, the maximum downwards displacement
of this weight must be located ∆h below the equilibrium position. That’s the position the weight
will try to get to following the breaking of the first band; afterwards, it will oscillate between
the two maximum positions.

Since the force acting upon the rubber band depends only on its displacement from the
rest position, the force acting upon it will be maximum when the weight is in the position
with maximum downwards displacement. In addition, we know that when the first band broke,
the force acting upon the second band is F1 and in the equilibrium position, the force acting
upon the second band is 2F1. We can simply conclude that when the displacement is maximum
downwards, the force is 3F1. Due to the previous reasoning, we know this is the maximum force
which will act upon the second band during the oscillations.

The second rubber band has to be able to endure forces greater than 3F1. We can see that
the constant c must satisfy c > 3.

Michal Nožička
nozicka@fykos.cz
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Problem FoL.16 . . . bungee jumping
There’s a bridge of height h = 50 m and a bungee jumping rope with rest length l = 10 m and
stiffness k = 80 N·m−1. A man with mass m attaches himself with this rope to the bridge and
jumps off (consider his initial velocity to be zero). What’s the largest possible mass of this man
such that the rope will stop him before hitting the surface below?

Michal is afraid to go bungee jumping.

First of all, let’s derive a formula for the depth at which the rope stops the jumper. At this
depth, the potential energy of the stretched rope will be equal to the potential energy of the
jumper. Therefore, let’s assume the rope stops the jumper at depth v (measured downwards
from the top of the bridge). Then, we’ve got

1
2k(v − 10 m)2 = mgv ,

where k is the stiffness of the rope, g the acceleration due to gravity and m is the mass of the
jumper. The term (v − 10 m) at the left hand side of the equation has this form because the
rest length of the rope is 10 m.

We have two unknown quantities in this equation: the depth v, at which the jumper stops,
and the mass of the jumper m. We can determine the first of these variables and determine
the other one from this equation. Since we want to know the critical mass of the jumper, let’s
consider the case when the jumper is stopped by the rope exactly at ground level, that is, at
depth v = 50 m. Now we can plug all the values to our equation and express the critical mass
of the jumper as

m =
1
2k(v − 10 m)2

gv

.= 130.48 kg .

It’s trivial that a jumper with larger mass won’t be stopped by the rope in time.
For the rope to stop the jumper before hitting the ground, the mass of the jumper cannot

be greater than m = 130.48 kg.

Michal Nožička
nozicka@fykos.cz

Problem FoL.17 . . . fidget spinner
A fidget spinner rotates with angular frequency ω = 12.34 s−1. Inner and outer radii of the ball
bearing inside a fidget spinner are in ratio k = 0.432. What is the period of rotation of one ball
inside the bearing around the center of the toy? The inner part of the bearing is static. Assume
there is no slipping. Matěj bought this autistic toy.

We know the ratio k = r/R of the inner radius r and the outer radius R. The instantaneous
velocity of a point on the contact between a bearing ball and the outer part of the bearing
is v = ω/R. A point on the contact of the ball and the inner part of the bearing has zero
instanteneous velocity, because the inner part is static. The velocity of the center of the ball is
given by the average of these velocities, i. e. v/2. The distance between the center of the ball
and the center of the bearing is (r +R)/2. The velocity of the center of the ball is therefore

ωk = v

r +R
= ωR

r +R
.

10

mailto:nozicka@fykos.cz


Online Physics Brawl 7th year November 29, 2017

Now we can express the period

T = 2π
ωk

= 2π (r +R)
ωR

= 2π
ω

(k + 1) .

The numerical result is T .= 0.729 s.
Matěj Mezera

m.mezera@fykos.cz

Problem FoL.18 . . . insect in amber
Amber (with refractive index n = 1.55) is a transparent yellow-brown fossil resin. A small
beetle, trapped and preserved within the stone, appears to be 2.25 cm below the surface when
viewed directly from above. We are looking at the stone from a large distance. How far beneath
the surface (in centimetres) is the beetle actually located?

Karel adapted a problem from Cutnell and Johnson: Physics 9e.
The beetle is at depth a below the surface of amber, but we see it as if the depth was b. Assume
that our eyes are at the distance y above the surface. Think of a line perpendicular to the
surface, going through the beetle. This line also goes exactly between our eyes since we are
looking directly from above. We will denote the distance of each eye from the perpendicular
line as x.

A light ray propagating from the beetle through the amber hits the surface at distance d,
refracts and then goes straight to one of our eyes. Let’s denote the angle of incidence and angle
of refraction as α and β, respectively. Now we can write down a system of equations

tanα = d

a
,

tan β = x− d

y
= d

b
,

where the last expression was obtained by similarity of triangles, because we see the beetle in
the direction of the refracted ray. By extending this ray we get a point of intersection with the
perpendicular line and this point is b below the surface.

Snell’s law leads to
sinα
sin β = n0

n
,

where n0 is the refractive index of air.
The accommodation range of eyes of an average adult is bounded from below by ∼ 15 cm,

therefore we can safely assume x ≪ y. This allows us to use approximations tanα ≈ sinα ≈ α.
Thus we can plug the expressions for tanα and tan β into Snell’s law and obtain

d
b
d
a

= n0

n
.

Rearranging for a gives
a = b

n

n0
,

and for the given values we get a .= 3.49 cm.

Jáchym Bártík
tuaki@fykos.cz
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Problem FoL.19 . . . swung rod
There’s a rigid rod with length l = 1.2 m and zero mass, which is attached at one end in such
a way that it can rotate around this fixed end. There are three small spheres with equal mass
attached to this rod (you may consider them point masses). One of the spheres is at the free
end of the rod and the other two at 1/3 and 2/3 of its length. The rod is held horizontally at
first. Then, we release it. What will be the velocity of its free end when it passes through the
equilibrium position (the bottommost point)? The acceleration due to gravity is g = 9.81 m·s−2.

Karel was teaching mechanics.

The moment of inertia of a point mass m with respect to an axis at distance d is J = md2.
If we denote the masses of the spheres as m, the moment of inertia of the whole system with
respect to the fixed end of the rod is

J = m
(
l

3

)2
+m

(2
3

)2
+ml2 = 14

9 ml
2 .

When the rod moves from the horizontal to vertical position, the potential energy that’s
released is

E = mg
l

3 +mg
2
3 +mgl = 2mgl .

It follows from the law of energy conservation that all this energy is converted to kinetic
energy of the rod, which satisfies

Ek = 1
2Jω

2 = 1
2J

v2

l2
.

Substituting for Ek and J , we obtain the equation

2mgl = 1
2

14
9 ml

2 v
2

l2
,

from which we can easily express

v =
√

18
7 gl

.= 5.50 m·s−1 .

The end of the rod will move with velocity 5.50 m·s−1.

Jáchym Bártík
tuaki@fykos.cz

Problem FoL.20 . . . deviated
There’s a pendulum consisting of a thin, rigid rod and a heavy weight attached to the end of
the rod. The rod is then attached (by its other end) to another, horizontal rod. So, this second
rod represents the axis of rotation of the pendulum. Now we rotate the second rod so that it
is inclined at angle φ = 30◦ with respect to the horizontal plane (and it still represents the
axis of rotation of the pendulum). Find the period of small oscillations T ′ of the pendulum and
compare it with the period T of a pendulum with a horizontal axis of rotation. Give the ratio
T ′/T as the result. Mirek was watching the new series Genius – Einstein.
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Let’s denote the gravitational acceleration by g. The movement of the deviated pendulum
is constrained to a plane inclined at angle φ w.r.t. the horizontal plane. Projection of the
gravitational acceleration on this plane is g∥ = g cosφ. The perpendicular component is g⊥ =
= g sinφ and is balanced out by forces inside the pivot (we assume zero friction, of course).

The period of small oscillations of a pendulum is related to g by

T ∼ g−1/2 ,

and for the deviated pendulum
T ′ ∼ g

−1/2
∥ .

The ratio of these periods is

T ′

T
=

(
g cosφ
g

)−1/2

=
√

1
cosφ .

Plugging in the numbers we get 1.075.

Miroslav Hanzelka
mirek@fykos.cz

Problem FoL.21 . . . slinger
We’ve got a slingshot made by attaching two ends of a massless rubber band to two points l0 =
= 15 cm apart. Rest length of the rubber band is equal to this distance. We place a pebble with
mass m = 5 g in the middle of the rubber band and stretch it horizontally, forming the legs of
an isosceles triangle with height h0 = 8 cm. Then, we release the pebble. What’s the maximum
velocity the pebble will reach? The rubber band (as a whole) has stiffness k = 50 kg·s−2.

Mirek was remembering his childhood toy.

Before the rubber band is stretched, the potential energy Ep0 is zero (even if the band was
stretched between the attachment points, we could still take it to be zero). After stretching, its
length increases from l0 to

l = 2
√
h2

0 + (l0/2)2 .

The potential energy after stretching is

Ep = 1
2k(l − l0)2 = 1

2k(2
√
h2

0 + (l0/2)2 − l0)2

and when the pebble is launched, that’s fully converted to kinetic energy

Ek = 1
2mv

2 = Ep .

The pebble’s launch velocity can now be expressed as

v =

√
k

m
(2

√
h2

0 + (l0/2)2 − l0) ;

after plugging in the numbers, v .= 6.9 m·s−1.

Miroslav Hanzelka
mirek@fykos.cz
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Problem FoL.22 . . . energies of rotation
There are two identical homogeneous cylinders rotating with the same angular velocity ω. One
cylinder, let’s denote it A, is rotating around its main axis. The other cylinder B is rotating
around a parallel axis with distance 4R/5 from the center of the cylinder, where R is the radius
of the cylinder. What’s the ratio of rotational kinetic energies of the cylinders? We’re interested
in EB/EA, where EA and EB are rotational kinetic energies of cylinders A and B, respectively.

Karel and Lukáš were riding on carousel.

The rotational kinetic energy of a rigid body with moment of inertia J rotating with angular
velocity ω is

Ek = 1
2Jω

2 .

The moment of inertia of a cylinder with respect to its main axis (axis of symmetry) is

J = 1
2mR

2 .

The kinetic energy of cylinder A can be computed easily as

EA = 1
4mR

2ω2 .

For the moment of inertia with respect to the axis displaced by d, we can utilise Steiner’s
(parallel axis) theorem J = J0 +md2. Substituting in the formula for kinetic energy, we get

EB = 1
2

(
1
2mR

2 +m
(4

5R
)2

)
ω2 = 57

100mR
2ω2 .

Therefore, the result is
EB

EA
=

57
100mR

2ω2

1
4mR

2ω2
= 57

25 = 2.28 .

Ratio of rotational kinetic energies of the cylinders is 2.28.

Jáchym Bártík
tuaki@fykos.cz

Problem FoL.23 . . . the Ripper
Consider a barbell hanging horizontally in the air. For the purposes of this problem, we can
imagine the barbell as a long thin rod with a small disk on each end. Let’s charge one disk with
charge Q = 100 μC, the other disk with charge −Q; the rod is perfectly insulating and no charge
can be transfered to the rod. Then, let’s activate a homogeneous electric field with intensity
E = 1 MV·m−1 parallel to the rod in the direction from negative to positive charge. Determine
the stress (in units Pa, with positive sign) in the middle of the rod caused by electrostatic
forces. The diameter of the rod is d = 2 cm, the length of the rod l = 1 m. Neglect polarisation
of dielectrics. Can’t get ripped by lifting weights? Rip the weights!

Let’s utilise the superposition of electric fields. The charges, which can be treated as point
charges due to small sizes of the disks compared to the whole barbell, attract each other with
force

F1 = kQ2

l2
.
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The rod is therefore compressed with force F1, which corresponds to pressure

p1 = F1
πd2

4

= 4kQ2

πd2l2
.

At the same time, there’s an external electric field acting on the charges. This field repels the
disks from each other with force

F2 = EQ .

The stress caused by this is
p2 = F2

πd2
4

= 4EQ
πd2 .

Subtracting the stresses, we get

p2 − p1 = 4Q
πd2

(
E − k Q

l2

)
.= 32,000 Pa ,

which is the total stress in the rod. We can see that the rod wouldn’t be torn apart, not even
if it was made of soft plastic. Increasing the intensity of the electric field would just result in
a spark discharge between the disks.

Miroslav Hanzelka
mirek@fykos.cz

Problem FoL.24 . . . inhomogeneous
Consider a method of launching rockets by imparting all the necessary momentum at the
moment of launch. A rocket with mass m = 10 t is launched directly upwards at its escape
velocity. How high above the Earth’s surface will the rocket be when its velocity drops to half
of the initial velocity? Express this result as a multiple of Earth’s radius R (i.e. in units R).
Neglect the effects of Earth’s atmosphere and rotation.

Kuba meditating on the physics of balistic missiles.

The escape velocity is just enough for the rocket to stop at infinity. The law of energy conser-
vation holds during the whole flight, so we can take the energy of the rocket at distance r from
the center of Earth to be equal to the energy at infinity. That gives

1
2mv

2 − GMm

r
= 0 ,

where G is the gravitational constant and M is the mass of Earth. Therefore, we get
1
2mv

2 = GMm

r
.

Taking the ratio of two such equations, we can see that(
v

v0

)2
= R

r
,

where R = 6,378 km is the Earth’s radius and v0 is the initial, escape velocity. Now we can
easily express the rocket’s height at v = v0/2 as

h = r −R = R
(
v0

v

)2
−R = 3R .
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The rocket’s velocity drops to half at height 3R.

Jakub Dolejší
dolejsi@fykos.cz

Problem FoL.25 . . . Jáchym-style
Consider an isotropic point source of β radiation with activity A = 3.4567 MBq, located in
a pool filled with a substance which dampens the radiation according to Lambert-Beer law
N(r) = N0 exp(−µr), where the absorption coefficient is µ = 1.1198 · 10−1 m−1. To what
distance r from the source should we place a Geiger-Müller counter with detection window area
S = 2.7183 · 10−6 m2, if we want it to detect N = 10 particles per second on average? Assume
that the detector registers all particles which hit the detection window.

Lukáš didn’t want to use a computer just to download problems.

Let’s at first neglect the substance dampening the radiation. The source is radiating isotropically
into a spherical shell with surface area 4πr2, but we’re only detecting the part of that radiation
incident on a small surface with area S. The number of detected particles is

N = AS

4πr2 .

However, the radiation is dampened, so we need to multiply this formula by a Lambert factor.
The resulting formula is

N = AS

4πr2 exp (−µr) .

We’ve got a non-linear equation for r, which cannot be solved analytically. However, we can
solve it either numerically or graphically. The graphical solution consists just of drawing a graph
of the function N(r) and reading out the value of r for the given N .

For a numerical solution, we can use a plethora of methods; let’s use the interval halving
method (bisection method). First, we choose a sufficiently large R so that the root of the
equation

AS

4πr2 exp (−µr) −N = f(r) = 0

which we’re looking for would lie in the interval (0, R). We can see that it’s true e.g. if f(0) and
f(R) have different signs. Then, we take the two halves of the interval. From these two halves,
we pick one the root should definitely lie in and apply the same procedure again to that smaller
interval until reaching the required precision.

The result is that the source should be at distance r .= 0.269,35 m.

Lukáš Timko
lukast@fykos.cz

Problem FoL.26 . . . drop the gallium into hot water
We’ve got mGa = 24 g of gallium and we’d like to perform an interesting experiment with it.
We decide to prepare hot water with temperature t0 = 93 ◦C and volume V = 250 ml. We place
the gallium into an imperfect calorimeter with heat capacity C = 95 J·K−1 and then pour the
hot water on it. What will the temperature (in degrees Celsius) of the calorimeter, gallium and
water be after reaching thermodynamic equilibrium? Consider the calorimeter with water and
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gallium an isolated, closed system. The initial temperatures of the gallium and the calorimeter
were t1 = 22 ◦C. The latent heat of fusion of gallium is l = 5.59 kJ·kg−1, specific heat capacity
as a solid c1 = 370 J·kg−1·K−1 and as a liquid c2 = 400 J·kg−1·K−1. The specific heat capacity
of water is c = 4,180 J·kg−1·K−1.

Karel was thinking about the price of gallium, so he at least set this problem.

The problems seems to be clear at first. We’re balancing the heat absorbed and given out. The
only complication is caused by the fact that gallium melts at tt = 29.8 ◦C. Therefore, let’s first
determine by how much (let’s denote it by ∆T ) the water cools down when it heats up the
gallium by ∆ts = tt − t1 and melts it. We can write the heat balance for this as

cV ϱ∆T = (C + c1mGa)∆ts +mGal ,

where ϱ is water density, which we’ll consider to be 1 g·cm−3. We find out that melting the
gallium at the given initial temperature only cools down the water by very little. That means
we’ll have thermodynamic equilibrium between the calorimeter, water and gallium at a tem-
perature higher than the melting point of gallium. We can now write the overall heat balance,
with t denoting the final temperature.

(C + c1mGa)∆ts +mGal + (C + c2mGa)(t− tt) = (t0 − t)cV ϱ

If we substitute ∆ts and express t, we obtain the equation

t = t0cV ϱ+ tt(C + c2mGa) −mGal − (C + c1mGa)(tt − t1)
(C + c2mGa) + cV ϱ

.

After plugging in the numerical values, we get t .= 86.4 ◦C.

Kateřina Smítalová
katka@fykos.cz

Problem FoL.27 . . . another infinite circuit?

R1

R1

R2

R2

R3

R3

R4

R4

B

A

What’s the resistance between points A and B of an infinite resistor network in the figure?
The resistors’ resistances are Ri = 2i−1R – each pair of resistors has the same resistance, which
is twice as large as that of the previous pair. Compute the numerical result for R = 3.002 Ω.

Karel was thinking about variations of a standard problem.
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We want to find the total resistance of the whole network; let’s denote it by R∞. One possibility
is to compute partial resistances one by one and watch what number they converge to. That
takes a lot of work, so it’s much better to use a trick. Let’s try to find the resistance of the
whole network in some other way and get a quadratic equation, which can be solved to find
R∞.

In this case, let’s imagine disconnecting the two resistors with resistance R1 = R. How does
the resulting circuit look? It’s very similar to the previous circuit, but all resistors in it have
doubled resistances. That’s exactly what we need. Based on this idea, we can write the equation

R∞ = R+ 2RR∞

R+ 2R∞
.

Now we only need to solve it

2R2
∞ − 3RR∞ −R2 = 0 , ⇒ R∞ = 3 ±

√
17

4 R .

We need to think about which solution of the quadratic equation is the correct one. Since
one solution is negative, we can easily pick the only positive solution. The total resistance is
R∞

.= 5.346 Ω.
Karel Kolář

karel@fykos.cz

Problem FoL.28 . . . medal
The organizers of FYKOS decided to award the top three participants with medals. The FYKOS
medal is a flat cylinder consisting of three layers. The first layer is made of gold, the second layer
is made of silver and the third one is copper. We know that the electrical resistance between the
lower and upper base of the medal is the same as if all three layers were made of copper. We also
know that the heat capacity of the medal is the same as if all three layers were made of gold.
Find out the mass ratio of the FYKOS medal and another medal of identicial proportions that
is made of silver only. Heat capacities, densities and resistivities of pure metals can be found on
the Internet (or in printed engineering tables). Jáchym thinks that a diploma is not enough.

The height of the medal is h = hAu + hAg + hCu where hAu, hAg and hCu are the heights of
the gold, silver and copper layers, respectively. We will make use of the relation for electrical
resistance

R = l

S
ζX ,

denoting the resistivity as ζX to avoid confusing with mass density ϱ. The electrical resistance
of the whole medal is given by the sum of respective resistances, which leads us to

hAu

S
ζAu + hAg

S
ζAg + hCu

S
ζCu = h

S
ζCu ,

where the RHS represents a copper medal of identical size. By substituting for h and multiplying
by the cross-section S we get

hAuζAu + hAgζAg + hCuζCu = hAuζCu + hAgζCu + hCuζCu ,

hAu = hAg
ζCu − ζAg

ζAu − ζCu
= k1hAg , (1)
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where we introduced the ratio k1 of the heights of gold and silver layer.
The heat capacity of a body made of material X can be expressed as

C = mcX = V ϱXcX .

Total heat capacity of the medal is again obtained as a sum of respective heat capacities

hAuSϱAucAu + hAgSϱAgcAg + hCuSϱCucCu = hSϱAucAu .

By substituting for h and dividing by the cross-section S we get

hAuϱAucAu + hAgϱAgcAg + hCuϱCucCu = hAuϱAucAu + hAgϱAucAu + hCuϱAucAu ,

hCu = hAg
ϱAucAu − ϱAgcAg

ϱCucCu − ϱAucAu
= k2hAg , (2)

where we introduced the ratio k2 of the heights of copper and silver layer.
The mass ratio of the FYKOS medal and a silver medal is

k = hAuSϱAu + hAgSϱAg + hCuSϱCu

hSϱAg
= hAuϱAu + hAgϱAg + hCuϱCu

hAuϱAg + hAgϱAg + hCuϱAg
.

Substituting for hAu and hCu from equations (1) and (2) we establish the result

k = hAgk1ϱAu + hAgϱAg + hAgk2ϱCu

hAgk1ϱAg + hAgϱAg + hAgk2ϱAg
=

1 + 1
ϱAg

(k1ϱAu + k2ϱCu)
1 + k1 + k2

.

For the given values we get k .= 1.1.

Jáchym Bártík
tuaki@fykos.cz

Problem FoL.29 . . . Dyson sphere under construction
A Dyson sphere is a hypothetical construction surrounding a star, built by an advanced civili-
sation in order to utilise all energy coming from their star. It should be a relatively thin shell
with radius comparable to the distance of planets from the star. What would be the equilibrium
temperature TS of this shell compared to the equilibrium temperature TP of a planet orbiting
the same star on a circular orbit with distance equal to the radius of the Dyson sphere (in
a system without the Dyson sphere)? Assume that the planet and the Dyson sphere are black
bodies and all bodies in this problem radiate isotropically. Neglect the cosmic background ra-
diation and the radiation of other space objects. As the result, compute the ratio k = TS/TP.

Karel was thinking about radiative heat transfer.

A Dyson sphere absorbs all solar radiation and radiates it in both directions (inwards and
outwards). However, the sphere has to absorb everything it radiates inwards anyway (radiation
which reaches the sun is negligible). In order to reach equilibrium, it has to radiate outwards
the same power as the power radiated by the sun (let’s denote it by PS).

PS = 4πR2σT 4
S ,

TS = 4

√
PS

4πR2σ
,
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where R is the distance from the sun and 4πR2 is the surface area of the sphere. The sun
radiates isotropically, so the radiation reaching the planet is

P = PS
πr2

4πR2 ,

where πr2 is the area of the planet’s cross-section. The planet also has to radiate the same
power from its surface

P = 4πr2σT 4
P ,

TP = 4

√
P

4πr2σ
=

4

√
PS

πr2

4πR2

4πr2σ
= 4

√
PS

16πR2σ
.

Now we can find the ratio
k = TS

TP
= 4√4 =

√
2 .

The equilibrium temperature of a Dyson sphere is
√

2 times the temperature of the planet.

Matěj Mezera
m.mezera@fykos.cz

Problem FoL.30 . . . too many cylinders
On an inclined plane with inclination angle 35◦, there’s a system of
three full cylinders and one hollow cylinder. Two smaller cylinders
have radius r1 = 0.1 m and moment of inertia J1 = 2 kg·m2, the
middle cylinder has r2 = 0.15 m and J2 = 10 kg·m2, and the hollow
cylinder has r3 = 0.3 m, d = 0.02 m and J3 = 20 kg·m2, where r3
is the outer radius and d is the thickness of its walls. All cylinders
are homogeneous. A rigid construction of negligible mass keeps the
cylinders in the same relative positions, but allows them to rotate.
Assume there is no slipping anywhere. What will be the distance
travelled by this system during the initial 15 s after being released
from rest? Because one cylinder is too mainstream.

Let’s denote the angular velocities of both small cylinders by ω1. The whole system then moves
with velocity v = ω1r1. The angular velocity of the hollow cylinder satisfies

ω3 = ω1
r1

r3
.

For the angular velocity of the middle cylinder, we get

ω2 = ω3
r3 − d

r2
= ω1

r1

r3

r3 − d

r2
.
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We can determine the masses of individual bodies from the formulae for moment of inertia

m1 = 2J1

r2
1
,

m2 = 2J2

r2
2
,

m3 = 2J3(
r2

3 + (r3 − d)2) .
The kinetic energy of one cylinder is Ek = 1

2mv
2 + 1

2Jω
2. If we substitute for the unknowns

of each cylinder from the formulae above, we find that the total kinetic energy of the system
satisfies

Ek = 3J1

r2
1
v2 + J2

r2
2
v2 + (r3 − d)2 J2

2r2
2r

2
3

v2 + J3(
r2

3 + (r3 − d)2)v2 + J3

2r2
3
v2 = kv2 .

Initially, the system is at zero height with zero potential energy. When it travels distance x, it
reaches height h = −x sinα, where α is the inclination angle of the plane. Its potential energy
will be Ep = mgh = −mgx sinα, where m = 2m1 + m2 + m3. The total energy of the system
is constant, so

Ek + Ep = kv2 −mgx sinα = 0 ,

v2 = mg sinα
k

x .

The acceleration of the system is constant, so we can use the formulae v = at and x = 1
2at

2.
Then, we have

a = mg sinα
2k .

Now we only need to substitute for the acceleration in the equation for x

x = mg sinα
4k t2 ,

so x .= 415 m.
Jáchym Bártík
tuaki@fykos.cz

Problem FoL.31 . . . do I hear that?
They say Chuck Norris can go get his beer so fast he meets himself. However, how would that
work if Chuck couldn’t break the laws of physics? According to the theory of relativity, he can’t
move faster than light, so he can’t see the photons he sent out (in vacuum, without reflection
or refraction). However, could he hear himself? What’s the minimum possible velocity with
which he has to run if he wants to hear (faster, in reverse) what he said on the way there when
running back? Chuck speaks with frequency f = 200 Hz and the human ear (Chuck’s ear too)
can hear frequencies in the range 20 Hz through 20 kHz. The speed of sound is c = 340 m·s−1.

Matěj imagined what it’d be like if Chuck Norris was subject to the laws of physics.
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In order to hear himself, he has to move faster than the sound waves he’s emitting. Therefore,
Chuck’s velocity v has to be higher than c. When he runs back with velocity v, he’ll meet the
sound waves in reverse order, so he’ll hear what he said backwards. Due to the Doppler effect,
the frequency of sound when the source and receiver move towards each other with velocities
equal to v satisfies

f ′

f
= c+ v

c− v
.

The condition required for him to hear himself is

20 Hz ≤ −f ′ ≤ 20,000 Hz ,

0.1 ≤ −f ′

f
≤ 100 .

It also follows from the Doppler law that when the source and receiver move towards each other
with equal velocities, the absolute value of the incoming frequency can’t be smaller than that
of the original frequency. Therefore, we’re only interested in the second condition, which says
that the ratio of frequencies has to be smaller than 100. The negative sign of the frequency
means Chuck hears himself in reverse. The resulting frequency has to be negative too. From
the previous equation, we can express the velocity v as a function of the change in frequency

v =
f ′

f
− 1

f ′

f
+ 1

c .

Substituting f ′/f = −100, we obtain a condition for the velocity with which Chuck can move

v ≥ 101
99 c = 346.9 m·s−1 .

For any higher velocity, he’ll hear himself clearly and the frequency he hears will approach the
emitted (negative) frequency.

Matěj Mezera
m.mezera@fykos.cz

Problem FoL.32 . . . we’ll be there in no time
In a galaxy far far away, a gigantic spaceship that can move with velocity v = 0.002c was built.
After reaching this velocity, the spaceship set course for Earth. What will be the error made
by an observer on Earth when estimating its distance, if he believes the spaceship to be a star
and measures its redshift as z = 0.005? Assume the Hubble constant is H = 70 km·s−1·MPc−1.
Enter the result in megaparsecs. Mirek was afraid of space invasion.

The redshift and spaceship velocity are small enough, so we can use the linear approximation
of Doppler effect

vr = zc ,

where vr is the velocity with which an object is moving away from us. According to Hubble’s
law,

vr = HD ,
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where D is the object’s distance. According to an observer on Earth, the spaceship’s distance
is

D = zc

H
,

but its real distance is
D′ =

(
z + v

c

)
c

H
.

The observer’s error is
|D′ −D| = v

H

.= 8.6 MPc .

The spaceship will never reach us, of course – this holds for any object for which we observe
redshift.

Miroslav Hanzelka
mirek@fykos.cz

Problem FoL.33 . . . boring laboratory routine
We are sitting in a lab, measuring the spectral lines of hydrogen. One value of wavelength in the
series of measurements is extremely low, λ = 91.184 nm. Assuming the Bohr model of hydrogen
is exact, what would be the distance of the electron whose transition caused this exceptional
emission? We also assume that the electron was in a bound state, no matter how large the initial
distance was. In your calculations, use the following constants: ionization energy of hydrogen
E0 = 13.598,4 eV, Planck constant h = 6.626,07·10−34 J·s, speed of light c = 2.997,92·108 m·s−1

and elementary charge e = 1.602,18 · 10−19 C.
Hint Use all the qunatities to the full given precision! Mirek sees atoms.

Using the Bohr model we can derive an expression for emitted wavelength

1
λ

= E0

hc

(
1
n2

1
− 1
n2

2

)
,

where n2 is an integer describing the initial energy level of the electron and n1 is the final
level. E0 is the ionization energy (expressed in J). Basic knowledge of hydrogen series tells us
that our observation fits into the Lyman series, i. e. n1 = 1 (this can be confirmed by a short
computation).

Electron-proton distance in the Bohr model is given by

rn = r0n
2 ,

where r0
.= 52.9 pm is the so called Bohr radius. Expressing n2 from the first equation (there’s

no point in rounding to the nearest integer due to very limited precision) and substituing to
the formula for radius, we get

r = r0

1 − hc
λE0

.= 0.55 μm .

We can concluded that before emission, the radius of the hydrogen atom was comparable to
the size of an average bacterium.

Miroslav Hanzelka
mirek@fykos.cz
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Problem FoL.34 . . . loud music
At a disco, there’s loud music blaring from one loudspeaker with power 200 W. Matěj doesn’t
like that music though, so he decides to play his own on his phone via its speaker with power
4 W. How many people will hear Matěj’s track louder than the disco? Matěj is standing 10 m
from the loudspeaker and the number density of people is 2 m−2.

It’s common to think about such things at a disco, right?
People will hear better the song whose intensity at that point is higher. Let’s denote the power
of the loudspeaker by PD, the power of the phone speaker by PM. We’ll use the fact that
intensity of sound I is actually power incident upon a unit area

I = P

4πr2 ,

where r is the distance from a source with power P . Let’s set up cartesian coordinates: the
loudspeaker is located at the origin and the phone at the coordinates (l, 0), where l = 10 m.
The individual intensities depend on the position of the receiver,

ID = PD

4π(x2 + y2) ,

IM = PM

4π[(x− l)2 + y2] .

Let’s find the curve describing the border of the area where the phone has higher intensity
ID = IM ,

PD

4π (x2 + y2) = PM

4π ((x− l)2 + y2) ,

PD(x− l)2 + PDy
2 = PMx

2 + PMy
2 ,

x2(PD − PM) + y2(PD − PM) − 2xlPD + PDl
2 = 0 ,

x2 − x
2lPD

PD − PM
+ y2 + PDl

2

PD − PM
= 0 ,(

x− 2lPD

PD − PM

)2
+ y2 = P 2

Dl
2

(PD − PM)2 − PDl
2

PD − PM
,(

x− 2lPD

PD − PM

)2
+ y2 = PDPLl

2

(PD − PM)2 .

We managed to convert this equation to the form describing a circle with center away from the
origin. This circle is known as the circle of Apollonius (it’s defined by a fixed ratio of distances
to 2 points) and its radius is

r2 = PDPLl
2

(PD − PM)2 .

The area of this circle is
S = πPDPLl

2

(PD − PM)2
.= 6.54 m−2 .

The number of people hearing the phone with higher intensity is S · 2 m−2 .= 13 people.

Matěj Mezera
m.mezera@fykos.cz
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Problem FoL.35 . . . football player
What’s the lowest velocity which a footballer has to impart to a ball located at the border of
the penalty area in order to hit the crossbar? The distance to the goal is d = 16.5 m and the
crossbar is at height h = 2.44 m. Neglect air resistance and the dimensions of the ball and the
crossbar. Kuba wanted to cheat.

The minimum necessary velocity corresponds to minimum distance to the goal, so we should
have the footballer stand straight in front of the goal and kick perpendicularly to the goal line.
Now we’re dealing with a 2D problem.

The ball follows a standard trajectory in a homogeneous gravity field, which is described by
the equations

x = vt cosα ,

y = vt sinα− 1
2gt

2 ,

where v is the initial velocity of the ball and α is its elevation angle. The crossbar is hit at time
t, so

d = vt cosα ,

h = vt sinα− 1
2gt

2 .

This gives us two solutions (v, t), but only one of them has positive t. We get

v = d

cosα

√
g

2(d tanα− h) = d

√
g

d sin(2α) − h cos(2α) − h
,

where we used the formulas for sine and cosine of a double angle.
Now, we’ve got velocity as a function of elevation angle only. The minimum of velocity

occurs when the denominator under the square root is maximised, which means its derivative
with respect to α must vanish. We get

∂

∂α
(d sin(2α) − h cos(2α) − h) = 2d cos(2α) + 2h sin(2α) = 0 ,

tan(2α) = − d

h
.

We obtained a single extremum, which has to be the minimum, because v(α) is continuous and
for angles 90◦ and arctan(h/d), we’ve got v = +∞.

Since tan(2α) < 0 and α ∈ (0, 90◦), we also need 2α ∈ (90◦, 180◦), when sin(2α) > 0 and
cos(2α) < 0. Using the relations between goniometric functions, we can now express

cos(2α) = − 1
1 + tan2(2α) = − h√

d2 + h2
,

sin(2α) =
√

1 − cos2(2α) = d√
d2 + h2

.
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The last step is to substitute this back to the expression for velocity, which gives us the
final expression for minimal velocity of the ball

v = √
g

√√
d2 + h2 + h

.= 13.7 m·s−1 .

Therefore v .= 13.7 m·s−1.
Jakub Dolejší

dolejsi@fykos.cz

Problem FoL.36 . . . water over gold
Lord Waterboard wanted to have his waterproof castle filled with water. The drawbridge of the
castle is rectangular (height h = 3 m and width s = 2 m) and rotates around its bottom side.
The drawbridge is drawn up and locked at the top; the lock will hold up against forces up to
F = 50 kN (the hinges at the bottom can withstand any force). What will the water level in
the castle be at the moment when the lock breaks and the water flows out and onto the poor
villagers? Matěj was thirsty.

Since the drawbridge acts as a lever, the lock is exposed to a force that differs from the outward
force of the water pressure. For this reason, we need to calculate the force through its torque.

The maximum allowed torque at the drawbridge isM = hF . Let’s denote the water level by
H. The pressure at height x is p(x) = (H −x)ϱg. There are two possible situations we can deal
with depending on whether H is larger or smaller than h. In this specific case, H > h (see the
result below). The torque with which water pushes against the drawbridge can be computed
by integrating

M = s

∫ h

0
xp(x) dx = sϱg

(1
2Hh

2 − 1
3h

3
)
.

We obtain

hF = sϱg
(1

2Hh
2 − 1

3h
3
)
,

H = 2sϱgh3 + 6hF
3sϱgh2

.= 3.7 m ,

which satisfies the condition H > h. If we tried to solve the other case (when the water level is
below the top of the drawbridge), we’d get H .= 3.6 m, which contradicts the initial assumption.

Matěj Mezera
m.mezera@fykos.cz

Problem FoL.37 . . . unbent, unbowed, unsunken
On the flat water surface of a pond floats a hollow half-sphere with diameter d = 30 cm and mass
m = 0.2 kg. By a vertical impulse the sphere is forced into oscillation. What is the maximum
kinetic energy of the impulse that won’t submerge the half-sphere? Neglect the resistive forces
of water. Xellos placed a spoon on his tea.

Oscillations are irrelevant, all we need to know is that the half-sphere will submerge when the
surrounding water reaches its edge. This means that the maximum kinetic energy is equal to
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work done on the half-sphere that is necessary to move it from the equilibrium position to the
critical position.

The resulting force exerted on the sphere is given as the difference between gravity and
buoyancy

F (x) = ϱπ

(
Rx2 − x3

3

)
g −mg ,

where x is the vertical size of the submerged part; we used the formula V = π(Rx2 − x3/3) for
the volume of a spherical cap. By integration we get

W = ϱπ(Rx
3

3 − x4

12 )g −mgx .

We need to integrate from equilibrium F = 0 to x = R. At the equilibrium, the balance equation
is

Rx2 − x3

3 = m

ϱπ
,

which is a cubic equation with no obvious solution – numerically we get x0
.= 2.11 cm. The

maximum kinetic energy is then equal to W (R) −W (x0) .= 3.63 J.

Jakub Šafin
xellos@fykos.cz

Problem FoL.38 . . . in the rain

φ

You’re riding a bike, it’s raining and there’s a puddle in front of
you. You don’t have any mudguards, so you slow down to 3 m·s−1.
What will be the maximum height (in cm above ground) to which
the water will splash when flying off a tyre with radius 35 cm?
Neglect all resistive forces. Štěpán rode a bike in the rain.

Due to centrifugal force, water flies off all points on the tyre. Con-
sider a point at angle φ as shown in the figure. That is, water flies
vertically upwards from the point at φ = 0 and horizontally from
the point at φ = π/2, which is the highest point on the tyre.

The vertical component of velocity of water flying off from the
point at angle φ is vy = v cosφ. The height of this point above the
ground is y0 = r sinφ+ r – we shouldn’t forget that the center of
the wheel is at height r.

Using the well-known formula for motion under influence of gravity, we can obtain the
maximum height reached from this point at angle φ

h(φ) = y0 +
v2

y

2g = r sinφ+ r + v2 cos2 φ

2g .

We’re looking for the maximum height which the water can reach. The solution will clearly
correspond to φ ∈ ⟨0, π/2⟩, since from any other point, water either flies off downwards or
doesn’t reach as high as from some other point.
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The first derivative of h
dh
dφ = cosφ

(
r − v2

g
sinφ

)
.

An extremum can occur where the derivative is zero, that is, at points

φ1 = π2 ,

φ2 = arcsin
(
gr

v2

)
.

We can check that φ1 is a minimum, while φ2 is a maximum. The maximum height above
the ground to which water splashes is

h(φ2) =
(
gr + v2)2

2gv2 ,

so h(φ2) .= 87.5 cm.

Štěpán Stenchlák
stenchlak@fykos.cz

Problem FoL.39 . . . fire up the synapses
The magnetic field of Earth suddenly vanished and we need to replace it somehow. We know
that the original field was approximately like that of a dipole and its magnitude at the equator
is approximately given by the formula |B| = B0/R

3, where B0 = 3.1 · 10−5 T and R is the
distance from the center of Earth as a multiple of Earth’s radius. We want to replace the field
using a small coil (solenoid) inserted into the center of Earth. The coil has N = 106 loops and
its radius is ϱ = 1 m. What current should flow through the coil if the new magnetic field is to
be equal to the initial field? Assume that the permeability of all materials is the same as that
of vacuum. Mirek cannot count to four.

The solenoid with current passing through it generates a magnetic field that’s, at sufficient
distances from the solenoid, the same as the field of a dipole. The dipole moment of one loop
is given by

m = IS ,

where I is the current passing through it and S is the area enclosed by the loop. For our coil
with N loops, the magnetic moment M can be expressed as

M = NIπϱ2 .

The field generated by a dipole moment M is described by the formula

B(r) = µ0

4π

(
3r(M · r)

|r |5 − M
|r |3

)
,

where µ0 is the permeability of vacuum and r is the position vector pointing from the center of
the dipole. The first term inside the brackets is zero on the equator (M is oriented north-south),
so the magnitude of the coil’s field at the equator is

|B| = µ0

4π
M

r3 = µ0

4π
NIπϱ2

r3 .
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By comparing it with Earth’s magnetic field, we get

B0R
3
E

r3 = µ0

4π
NIπϱ2

r3 ,

and from this, the current can be expressed as

I = 4B0R
3
E

µ0Nϱ2 .

After plugging in all numbers, we get I .= 2.6 · 1016 A. We can safely claim that even if the coil
didn’t melt in Earth’s core by some miracle, it would definitely melt because of the current
flowing through it (melt is a serious understatement).

Miroslav Hanzelka
mirek@fykos.cz

Problem FoL.40 . . . efficient ride
An electric car is driving on a level road. Its effective cross-section is S = 2 m2 and its drag
coefficient is C = 0.2. Its motor has efficiency η = 40 %. What’s the optimal constant velocity
(which maximises the car’s range), if the power consumed inside the car (by air conditioning,
radio,. . . ) is a constant P0 = 400 W? The density of air is ϱ = 1.29 kg·m−3.

Matěj dreams of driving a Tesla.
Using Newton’s formula for air drag

Fo = 1
2CSϱv

2 .

The power spent when driving with velocity v is

Pv = Fov = 1
2CSϱv

3 .

The total power consumption of the car is the sum of this power (divided by efficiency) and
the power spent on appliances inside the car. That means

P = 1
η
Pv + P0 .

If the car’s battery capacity is E, it can keep going for time t = E
P

and its range is

s = vt = Ev

P
= Ev

1
2η
CSϱv3 + P0

.

The first derivative of the distance with respect to velocity vanishes at the maximum,

ds
dv =

E 1
2η
CSϱv3 + EP0 − Ev 3

2η
CSϱv2(

1
2η
CSϱv3 + P0

)2 = 0 ,

1
2ηCSϱv

3 + P0 − 3
2ηCSϱv

3 = 0 ,

v = 3

√
P0η

CSϱ
.
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Numerically, v .= 6.77 m·s−1.

Matěj Mezera
m.mezera@fykos.cz

Problem FoL.41 . . . hot day
During the spring equinox a little boat is swimming in the equatorial seas. The boat has
the shape of a rectangle with surface area 5 m2. The Sun shines on the surface of Earth with
intensity 1.3 kW·m−2. How much solar energy in MJ will the boat receive from sunrise to
sunset? Štěpán gazed on hot metal roofs.

The first step is to realize that the angle of incidence of sun rays is changing throughout the
day. Right after the sunrise and right before the sunset, the incident power will be minimal,
while at noon it will reach the maximum value. Let us assume that the speed of the boat is
negligible in comparison to Earth’s rotation.

For an angle of incidence α the power can be expressed as P (α) = SI sin(α), where S is the
surface area of our boat and I is the intensity of solar radiation. The angle α changes linearly
with time and the dependence can be written as α(t) = πt/T , where T = 12 h is the length of
one day. The total energy received by the boat is given by the integral

E =
∫ T

0
P (α) dt = SI

∫ T

0
sin

(
π
t

T

)
dt = 2SIT

π
.

The boat will receive 178.8 MJ in the form of solar energy, which is equal to 64 % of energy
received during twelve hours of perpendicular irradiation.

Štěpán Stenchlák
stenchlak@fykos.cz

Problem FoL.42 . . . all the way up, please
What’s the minimum length (in kilometres) of a space elevator built at the equator, so that it
doesn’t collapse under gravity? Consider the elevator to be just a few straight ropes leading to
space. The elevator is homogeneous and doesn’t contain any extra weight at the end.

We’re not interested in the trivial solution of zero length. Štěpán forgot how to use a lift.

The minimum length corresponds to the case in which the whole rope is vertical.
In order to simplify the solution, let’s define linear density of the elevator σ.
Now, let’s focus on a small segment of the elevator with length dr and distance r from the

center of Earth. The mass of this segment is dm = σdr. This small segment is attracted to
Earth by gravitational force GMdm

r2 , where G is the gravitational constant and M is the mass
of Earth. At the same time, this segment is repelled from Earth by centrifugal force −ω2rdm,
where ω is the angular velocity of Earth’s rotation. These forces act in opposite directions, so
we need to change the signs of one of them.

Summing up these two (counteracting) forces, we get the total force acting on a small
segment of the elevator

dF = σ
(
G
M

r2 − ω2r
)

dr .
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At small distances, the gravitation is larger, so dF > 0. At some height, the so-called
geostationary orbit, dF = 0. For all higher segments, the centrifugal force will be stronger and
dF < 0. We’re interested in the length of the elevator, measured from the surface of Earth with
radius R up to some height h above the surface, which leads to the net force summed over all
segments being zero. That means the gravitational forces at small heights and centrifugal forces
at large heights cancel out and the elevator will neither fall down nor be ripped off at the base.
That means ∫ R+h

R

dF = 0 ,

σ

(
hGM

R(R+ h) − 1
2hω

2(2R+ h)
)

= 0 .

In this last equation, the only unknown is h. After some manipulation, we obtain a quadratic
equation with a suitable solution

h =

√
2GM
Rω2 + R2

4 − 3R
2 ,

so h .= 144,000 km.

Štěpán Stenchlák
stenchlak@fykos.cz

Problem FoL.43 . . . shower
What’s the maximum useful running time for a shower fed from a cylindrical boiler with cross-
section S = 0.8 m2 and height H = 1.5 m? The showerhead is connected directly to the bottom
of the boiler, the area through which water flows out of the showerhead is s = 0.8 cm2. Consider
the minimum volumetric flow rate for which showering is possible to be Q0 = 2 dl·s−1. Assume
that there’s no water flowing into the boiler and all water flowing into the showerhead comes
from the boiler.

Enter the result in minutes. There wasn’t enough water for Kuba!

The flow of water must satisfy Bernoulli’s equation

Q = Sv = su ,

1
2ϱv

2 + hϱg = 1
2ϱu

2 ,

where v is the speed with which the water level in the boiler drops, u is the speed with which
water flows out of the showerhead, ϱ is the density of water, h the height of the water level in
the boiler and g is the acceleration due to gravity. Since S ≫ s, it follows from the continuity
equation that v ≪ u, so we may neglect the term with v in the Bernoulli equation.

From this, we can express v as
v = s

S

√
2gh .

Now, we can compute the minimum allowed height of water in the boiler

Q0 = Sv0 = s
√

2gh0 ,
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which gives us

h0 = Q2
0

2gs2
.= 32 cm .

Now we have to solve the differential equation

−dh
dt = v = s

S

√
2gh ,

which can be done as

s

S

√
2g

t∫
0

dt = −

h0∫
H

dh√
h

= 2
(√

H −
√
h0

)
,

t = S

s

√
2
g

(√
H −

√
h0

)
= 50 min .

We can keep showering for 50 minutes using only water from the boiler. In reality, water from
the boiler would be mixed with an approximately equal amount of tap water, which would give
us an hour and half (provided a suitable technical execution).

Jakub Dolejší
dolejsi@fykos.cz

Problem FoL.44 . . . space race
Two spacehips, USS Annie and USS Bonnie, are racing. Both are approaching the finishing
line with their maximum speeds vA = c/4 and vB = c/2. An observer at rest at the finishing
line at time 0 observes Bonnie at distance dB = 250 km and Annie at distance dA = 100 km.
Determine the absolute difference (positive number) between the times when the spaceships
reach the finishing line according to this observer in milliseconds.

According to Mirek, placings in a race are relative.

At the moment when we see Annie at distance dA, the spaceship is actually closer, because the
light signal reached us with a delay. Let’s denote the travel time of the signal by t and the real
distance of Annie from the goal by d′

A. The signal travelled for

t = dA

c
,

so the real distance is
d′

A = dA − vAt = dA

(
1 − vA

c

)
.

We can similarly compute the real distance of Bonnie

d′
B = dB − vBt = dB

(
1 − vB

c

)
.

The difference between finish times of the spaceships is

|tA − tB| =
∣∣∣∣d′

A
vA

− d′
B
vB

∣∣∣∣ =
∣∣∣dA

vA

(
1 − vA

c

)
− dB

vB

(
1 − vB

c

)∣∣∣ .
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Numerically, we get |tA − tB| .= 0.167 ms. The first ship to reach the goal is USS Bonnie.

Miroslav Hanzelka
mirek@fykos.cz

Problem FoL.45 . . . gray plates
There are two parallel infinite planes in vacuum. The first plane has fixed temperature T1 =
= 200 K and reflectivity R1 = 1/2 (the ratio of reflected to incident light intensity). The second
plane has fixed temperature T2 = 300 K and reflectivity R2 = 1/3. What will be the temperature
of a third plane with reflectivity R = 1/3 placed in parallel between them?

Assume that all planes radiate as black bodies (have emissivity 1), they just partially reflect
incident light. The transmissivities of all bodies are zero.

Kuba wanted to quantify the cooling effect of reflection

A radiated ray will keep being partially reflected between planes and partially absorbed. There-
fore, part of the energy radiated by each plane returns back to it. We must compute what part
of radiated heat is actually transferred to other planes.

When plane R radiates a ray with intensity I in the direction of plane R1, the ray reflected
from that plane has intensity R1I, which means that plane R1 absorbed (1−R1)I. The reflected
ray is reflected a second time from plane R, which leads us to the original situation, just with
intensity I replaced by R1RI. This way, we could keep going to get a geometric series for
intensity absorbed at plane R1 in the form

I1 =
∞∑

k=0

I(RR1)k(1 −R1) = I
1 −R1

1 −RR1
.

The complement of this intensity I − I1 is equal to the intensity absorbed by plane R.
Now we’ve got full information about energy transfer between planes. Replacing R1 by R2,

we obtain the formula for intensity transferred from plane R to plane R2 and replacing Ri by
R, we obtain the formula for intensity transferred from plane Ri to plane R.

In stationary state, the total radiated energy is equal to total incident energy. This holds
for radiated and incident power and therefore for intensities of exchanged radiation. After mul-
tiplying terms from Stefan-Boltzmann law by coefficients given by multiple reflection between
planes, we may write the law of energy conservation in the form

σT 4
( 1 −R1

1 −RR1
+ 1 −R2

1 −RR2

)
= σT 4

1
1 −R

1 −RR1
+ σT 4

2
1 −R

1 −RR2
.

After plugging in all reflectivities, the solution is

T = 4

√
16T 4

1 + 15T 4
2

27
.= 272 K .

This result says that if T1 = T2, the resulting T would be higher. That’s caused by asymme-
try between planes R and R1, where both the energy radiated by plane R1 and that radiated
by plane R flow mostly towards plane R. It’s all counter to physical intuition and says that the
emissivity of a grey body is actually less than 1.

Jakub Dolejší
dolejsi@fykos.cz
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Problem FoL.46 . . . do not drown!
There’s a river of width d = 20 m with a parabolic velocity profile, meaning that at the distance
y from either bank, the speed of the current is v(y) = 4v0

y
d

(
1 − y

d

)
, where v0 = 1 m·s−1 is the

speed in the middle. The vertical velocity profile is constant. How long would it take us to swim
across the river if we stay on a trajectory perpendicular to the bank? In the absence of any
current our swimming speed would be w = 2v0. Kuba was carried away by the current.

In order to stay on the given trajectory, the swimmer must compensate for the current speed.
Let us denote the angle between the vector of the swimmer’s velocity and the perpendicular
trajectory as α. This angle appears in the formula for the x component of swimmer’s velocity

w sinα = v(y) = 4v0
y

d

(
1 − y

d

)
.

The y component can be obtained from the differential equation

dy
dt = w cosα = w

√
1 −

[4v0

w

y

d

(
1 − y

d

)]2
.

Here we used cosα =
√

1 − sin2 α.
The solution of this differential equation will lead us to the expression for travel time τ .

Plugging in the value w = 2v0 and substituing ψ = y/d, we get

τ = 1
w

d∫
0

dy√
1 −

[ 4v0
w

y
d

(
1 − y

d

)]2
= d

w

1∫
0

dψ√
1 − 4ψ2 (1 − ψ)2

.= 1.078 d
w

.= 10.8 s .

The elliptical integral has to be solved numerically. We can now see that the resulting time is
only by 0.8 s longer than it would be if the river was not flowing.

Jakub Dolejší
dolejsi@fykos.cz

Problem FoL.47 . . . pressure cooking
A pressure cooker is a closed pot with walls of thickness t = 5 mm, thermal conductivity λ =
= 9 W·m−1·K−1, volume V = 3 l and surface area S = 4 dm2. There is a single hole in its walls
with diameter d = 4 mm. We start heating the pot with power P = 7 kW, pour Vv = 1 l of
water inside, close the lid and bring it boil. The room temperature is Ti = 20 ◦C. Neglect the
dependence of boiling point on pressure. What will be the pressure increase (with respect to
atmospheric pressure) inside the pot? Xellos knows how to cook water.

Let’s assume that the system of pot and steam is in thermodynamic equilibrium, so the power
P is spent only on heat loss through the walls of the pot and evaporation of water. If the
temperature of the pot and water is equal to the boiling point T = 100 ◦C, the power lost
through the walls of the pot is

Pe = λS

t
(T − Ti) ,
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so the water evaporates at a rate

dm
dτ = 1

l

(
P − λS

t
(T − Ti)

)
,

where l .= 2.26 MJ·kg−1 is the latent heat of vaporisation of water. Since the volume of steam
is much larger than volume of water with equal mass, we need an approximately equal mass
of water to escape from the pot through the hole; this gives us the velocity of steam escaping
through the hole

v = dm
dτ

1
ϱ

4
πd2 .

We can tie this velocity to an increase in pressure based on Bernoulli equation

∆p = 1
2ϱv

2 .

The density of steam ϱ at temperature T is given by the ideal gas equation of state as

ϱ = Mp

RT
,

where M = 18 g·mol−1 is the molar mass of water and p is the pressure (we may assume the
increase in pressure is sufficiently small, so p is approximately equal to atmospheric pressure).
All together, we get

∆p = RT

Mp

8
π2d4l2

(
P − λS

t
(T − Ti)

)2 .= 1.6 kPa .

The assumption T = 100 ◦C isn’t completely correct, since the boiling point depends on pres-
sure. However, we can see that we really have ∆p ≪ p, so the real boiling point of water in the
pot is close to the standard one and the result is approximately correct.

Jakub Šafin
xellos@fykos.cz

Problem FoL.48 . . . thirteen barrels
Consider a hermetically sealed container with known volume containing a gas with known
pressure. We also have a barrel with volume equal to one thirteenth of the volume of the
container. First, we connect the barrel to a source of gas (which fills it with gas with fixed
pressure) and wait for the pressure in the barrel to equalise. Then, we disconnect the barrel
from the source, connect it to the container and wait for the pressures to equalise. Finally, we
disconnect the barrel from the container. What must the ratio of pressure of gas in the source
to initial pressure in the container be if we want to repeat this process exactly 13 times in order
to increase the pressure in the container to exactly 13 times its initial value? Assume that the
ambient temperature is constant and that both the barrel and the container are in thermal
contact with their surroundings. Jáchyma got an idea on Friday the 13th.

After connecting a barrel with volume Vb to the source, the pressure in the barrel will become
equal to the pressure of the source pz. In the container with volume Vn, we have gas with pressure
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p0. After connecting the barrel to the container, the pressure in both vessels will become p1.
Since everything happens at constant temperature, it follows from the equation of state that

p1 (Vb + Vn) = pzVb + p0Vn .

We can write this in the form p1 = k p0 + (1 − k) pz, where we used the substitution

k = Vn

Vn + Vb
. (3)

We found an equation describing the change in pressure in the container after connecting and
disconnecting the barrel once. If the whole process happens n times, the pressure in the container
will be

pn = knp0 + (1 − k) pz

n∑
i=1

ki−1 = knp0 + (1 − k) pz
kn − 1
k − 1 = knp0 + (1 − kn) pz .

The ratio of pressure pz to p0 then satisfies

pz

p0
=

pn
p0

− kn

1 − kn
.

If we substitute 13 for n, the expression in (3) for k, and use conditions from the problem
statement for Vn and p13, that is, Vn = 13Vb and p13 = 13p0, we can compute the result in the
form

pz

p0
=

13 −
(

13
14

)13

1 −
(

13
14

)13 .

Numerically, pz/p0
.= 20.40.

Jáchym Bártík
tuaki@fykos.cz

Problem FoL.49 . . . space cowboy
An astronaut with a space gun is floating freely in empty space. The gun is a futuristic weapon,
that, when fired, imparts the projectile with kinetic energy Ek = 1 · 1017 J (measured in the
reference frame in which the center of mass of the gun and projectile is at rest). Find the
velocity with which the projectile will move away from the astronaut (in the reference frame
of the astronaut). The mass of the astronaut with the gun is m1 = 100 kg, the mass of the
projectile is m2 = 10 kg. Neglect any decrease in mass due to burning of explosive charges
and rotation of objects. Enter the result as a multiple of the speed of light (in units of
c). Mirek thinks that guns are operational in vacuum.

Let’s observe the event from the reference frame of the center of mass, in which the astronaut
is initially at rest. The kinetic energy of the fired projectile is

Ek =
√
m2

2c
4 + p2

2c
2 −m2c

2 .

Next, let’s express the momentum of the projectile

p2 =
√
E2

k + 2Ekm2c2

c
.
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In this problem, energy is not conserved, but momentum is, so p1 = −p2 holds. The momentum
can also be expressed in the form pi = γimivi, where

γ = 1√
1 − v2

i
c2

.

We get an equation for the velocity of the projectile√
E2

k + 2Ekm2c2

c
= 1√

1 − v2
2

c2

m2v2 . (4)

We can express the velocity of the projectile as

v2 = c

√
ε2 + 2ε
1 + ε

,

where ε = Ek/(m2c
2) is the ratio of kinetic energy to rest energy of the projectile. To compute

the velocity of the astronaut, we’ll use equation (4) too, we only need to change the indices on
the right hand side from 2 to 1 (and watch out for the sign – the astronaut and the projectile
are moving in opposite directions). We find the expression

v1 = c

√
ε2 + 2ε

µ2 + 2ε+ ε2 ,

where µ = m1/m2.
Now we just need to combine the velocities correctly. Our center-of-mass observer is moving

with velocity v1 with respect to the astronaut and the projectile is moving with velocity v2
with respect to the observer. From the astronaut’s point of view, using the relativistic velocity
addition formula, the projectile will move with velocity

u2 = v2 + v1

1 + v1v2
c2

.

After plugging it all in, the result is numerically u2
.= 0.4743c.

Miroslav Hanzelka
mirek@fykos.cz

Problem FoL.50 . . . pressure cooking reloaded
A pressure cooker is a closed pot with walls of thickness t = 5 mm, thermal conductivity λ =
= 9 W·m−1·K−1, volume V = 3 l and surface area S = 4 dm2. There is a single hole in its walls
with diameter d = 4 mm. We start heating the pot with power P = 7 kW, pour Vv = 1 l of
water inside close the lid and bring it to boil. The room temperature is Ti = 20 ◦C. Compute
the increase in the boiling point of water (in ◦C) with respect to the boiling point at standard
conditions (in an open pot), which is 100 ◦C. Xellos knows how to cook water.

Let’s use the result of the previous version of this problem: the pressure inside the pot is given
by the formula

p = pa + RT

Mp

8
π2d4l2

(
P − λS

t
(T − Ti)

)2
.
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We still know neither the pressure nor the temperature in the pot. The pressure depends on
the boiling point according to Clausius-Clapeyron equation

p = pa exp
(

−L

R

( 1
T

− 1
Tv

))
,

where Tv = 100 ◦C is the boiling point at atmospheric pressure and L = lM is the molar latent
heat of evaporation of water. We could combine these equations, but we’d get a nasty equation
for T which we could only solve numerically. We can, however, use the fact that the pressure
and boiling point won’t change much inside the pot. Let’s denote ∆T = T − Tv and expand

p

pa
≈ 1 − L

R

( 1
T

− 1
Tv

)
≈ 1 + L

R

∆T
T 2v

,

lM

R

∆T
T 2v

≈ 8RTv

π2d4l2Mpa

(
P − λS

t
(Tv − Ti)

)2
,

∆T ≈ 8R2T 3
v

π2d4l3M2p2a

(
P − λS

t
(Tv − Ti)

)2
.

We utilised the approximations T ≈ Tv, p ≈ pa. We get ∆T .= 0.46 ◦C – it is clear that the
assumption T ≈ Tv holds. Since the change in the boiling point is sufficiently small, we’d reach
a very similar result (0.45 ◦C) by directly using the pressure computed in the previous version
of this problem and the Clausius-Clapeyron equation.

Jakub Šafin
xellos@fykos.cz

Problem FoL.51 . . . balls of steel
There are two conducting balls with radii R1 = 0.1 m, R2 = 0.2 m inside a homogeneous electric
field E = Eez, where E = 50 kV·m−1. The spherical coordinates of the center of the second ball
with respect to the center of the first one are (r, ϑ, φ), where the vector corresponding to ϑ = 0
lies in the direction of cartesian axis z and 0 ≤ φ < 360◦. Find the force between those balls
for R1,2 ≪ r = 5 m, ϑ = 30◦, φ = 50◦. Xellos wanted to make a problem that has balls.

Let us begin with only one ball R in a homogeneous field. The ball is a conductor, so there will
be induced charge on its surface distributed in such a way that the resulting electric potential
on the ball will be constant. In our case this means that there is a linear dependence between
the potential of the induced charge and the coordinate z.

This condition is fulfilled by the dipole potential. Two charges ±q placed along the z axis
at a mutual distance d ≪ R, symetrically with respect to the center of the ball, create a dipole
potential

Vi(r) ≈ q

4πε0

(
− 1√

r2 + zd
+ 1√

r2 − zd

)
≈ qzd

4πε0r3 .

On the surface of the ball, we have r = R; the potential of the ambient field is Ve = −Ez (plus
a constant), so we need to create a dipole moment

p = qd = 4πε0R
3E .

With two balls, we would have to account for the mutual induction between those two balls. In
our case, R1,2 ≪ r, thus we can introduce an approximation that neglects this effect.
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Now we have to find the force between two (induced) dipoles. We know that the resulting
force will be independent of φ due to symmetry. The dipole moments are

p1,2 = q1,2d1,2ez = 4πε0R
3
1,2E .

The formula for the force between two dipoles is well known:1

F = 3
4πε0r5

(
(p1 · r)p2 + (p2 · r)p1 + (p1 · p2)r − 5(p1 · r)(p2 · r)

r2 r
)
.

Since p1, p2 point in the direction of z and z = r cosϑ, we obtain

F = 3p1p2

4πε0r5

(
2r cosϑez + (1 − 5 cos2 ϑ)r

)
.

The expression in parentheses has a perpendicular component (1 − 5 cos2 ϑ)r sinϑ and parallel
component (3 − 5 cos2 ϑ)r cosϑ. Its absolute value then is, by the Pythagorean theorem,

r
√

1 + 5 cos4 ϑ− 2 cos2 ϑ = r
√

sin4 ϑ+ 4 cos4 ϑ

and the resulting force is

F = 3p1p2

4πε0r4

√
sin4 ϑ+ 4 cos4 ϑ = 12πε0R

3
1R

3
2E

2

r4

√
sin4 ϑ+ 4 cos4 ϑ

.= 1.62 · 10−8 N .

We can easily show that the dipole field decreases with distance so fast that the mutual induction
is negligible. The dipole field of the second ball at the distance r is weaker than the homogeneous
field by approximately (R2/r)3 < 1 · 10−4, a similar evaluation can be done for the first ball.

Jakub Šafin
xellos@fykos.cz

Problem M.1 . . . tic-toc
How many times greater is the distance travelled by the tip of the second hand on a clock face
than the distance travelled by the tip of the minute hand, during one day (exactly 24 hours)?
The length of the second hand is 105 mm, of the minute hand 100 mm.

Kiki was killing some time.
The travelled distance s is given by s = rφ, where r is the radius and φ is the angle (in radians).
The full angle is 2π. Let us see how many full rotations does each hand make during one day.
The second hand makes one rotation per minute, making it 1,440 rotations per day. The minute
hand makes 24 rotations per day. Since we are interested in the ratio of distances, factor 2π
cancels out and the result is

x = 1,440r1

24r2
.

For given values we get x = 63. The second hand will travel 63 times greater distance than the
minute hand.

Kristína Nešporová
kiki@fykos.cz

1The derivation is not hard, but it is onerous. For two magnetic dipoles, the formula can be found e. g. on
Wikipedia https://en.wikipedia.org/wiki/Magnetic_dipole#Forces_between_two_magnetic_dipoles. To express
the force between electric dipoles, we just need to make substitutions m ↔ p and µ0 ↔ 1/ε0.
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Problem M.2 . . . far from school
Luboš and Náry leave the student dormitory at the same time and both head (separately) to
school. The distance between the school and the dormitory is l = 350 m. Luboš has got a swift
pace, vL = 2 m·s−1, but he is also very forgetful. During his walk to school he had to return
three times to the dormitory – the turning points were at distances 100 m, 200 m and 300 m
from the dormitory. Each time he spent tL = 1 min inside the dormitory. Náry walks at the
same speed as Luboš, vN = vL, but he doesn’t turn back to get the things he forgot. However,
he has another bad habit – stopping and talking to passersby. Let’s assume he bumps into
someone every 50 m (including the dormitory entrance and school entrance) and talks to him
for tN = 1.5 min. What will be the difference of Luboš’s and Náry’s travel times? If Náry arrives
first, give the result as a negative number. Mirek counted how many times Luboš returned.

Luboš returns three times, every time walking the same distance (100 m, 200 m and 300 m)
twice, and then he walks straight from dormitory to school (350 m), so the total travel time is

TL = 3tL + 2
vL

(100 m + 200 m + 300 m) + 350 m
vL

.= 955 s .

Náry stops eight times, but walks without returning, so his travel time is

TN = 8tN + 350 m
vN

.= 895 s .

The difference then is TN − TL
.= −60 s, meaning Luboš will arrive one minute after Náry.

Miroslav Hanzelka
mirek@fykos.cz

Problem M.3 . . . not falling well
A cylindrical glass with radius of the base R = 5 cm is filled with beer so that the surface of
the liquid reaches h = 4 mm above the edge (measured at the center of the surface). This is due
to the strong surface tension of σ = 72 mN·m−1. A fly just drowned in the beer and floats at
the distance r = 2 mm from the center of the surface. How fast will the fly be moving when it
reaches the edge of the glass? Assume it was initially at rest, the slope of the surface close to
the center is small (but non-zero) and all resistive forces are negligible.

Xellos was drinking a beer.

This is an easy problem relying on the law of energy conservation – velocity is independent of
the trajectory and is related to the height difference ∆h through the formula

v =
√

2g∆h .

Since we assumed the surface is almost level near the center, the fly must have been initially in
the height h above the edge of the glass. Right before reaching the edge of the glass, its height
will be 0, therefore ∆h = h and v ≈

√
2gh = 0.28 m·s−1.

Jakub Šafin
xellos@fykos.cz
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Problem M.4 . . . don’t fall at all

M , a

m

A

B

In the figure there is a construction made of two rods as seen from
above. The length and mass of each rod are a and M . A mass m =
= M/4 is attached to the end of one of the rods. We have welded
another homogeneous rod to the construction (the thin line in the
figure) so that the center of mass of the new rod coincides with
the center of mass of the construction. Find the length of the third
rod (distance between A and B in the figure) and give the result as
a multiple of a.

Mirek was unhappy because he couldn’t touch the center of mass.

First, let us find the coordinates of the center of mass T of the construction

xT =
M a

2 +Ma+ M
4 a

9
4M

= 7
9a ,

yT =
M
4

a
2

9
4M

= 1
18a ,

where the origin was put at the left end of the left-right pointing rod. The new rod must be
welded on the construction in such a way that the distance between A and the center of mass
is equal to the distance between B and the center of mass. So

|AB| =
√

(2(a− xT))2 + (2yT)2 =
√

17
9 a .

In multiples of a, the length of the new rod is approximately 0.46.

Miroslav Hanzelka
mirek@fykos.cz

Problem E.1 . . . breaking a capacitor
We’ve got a capacitor formed by two separated conducting plates. We charge it and disconnect
it from the voltage source. How many times larger will the charge we can get from the capacitor
be, if we break it into four identical pieces and place them on top of each other without rotating
them in any way? Štěpán was breaking chocolate into pieces.

Let’s denote the capacity of the original capacitor by C0 and its voltage by U . If we split it
into 4 identical pieces, we get capacitors with quarter capacities (since their surfaces decrease
to a quarter of the original) and the same voltage U .

If we combine them in series, the total capacity will be C0/16 (you can verify this yourselves)
and the voltage will be 4 times larger.

We can compute the total charge as

Q = 4U 1
16C0 = 1

4UC0 = 1
4Q0 .

The charge will be four times smaller.
We can reach the same result by working with capacitor energy, which must be conserved.
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Note that the problem can be solved in an even simpler way. We only need to notice that
the pieces of plates will have only a quarter of the original charge, so the total charge we can
obtain will also be just a quarter of the original.

Štěpán Stenchlák
stenchlak@fykos.cz

Problem E.2 . . . ideal voltage
Consider an ideal voltage source. First, we connect to it in parallel three identical resistors
and find out that the total power consumed by the resistors is P . What will be the consumed
power if we connect the resistors to the source in series? Compute the result as a multiple of
P . Karel was teaching about electric voltage.

When the resistors with identical resistances R are connected in parallel, their total resistance
is equal to R/3. When they are connected in series, it’s 3R (you can verify that yourselves).
In order to compute the power P of resistors connected in parallel, we’ll use the well-known
formula for power consumed by a resistor and Ohm’s law. We get

P = UI = U2

Rc
= 3U2

R
,

where I is the total current flowing through the circuit, U is the voltage of the source and Rc

is the total resistance of the circuit. The power P ′ of resistors connected in series is

P ′ = UI = U2

Rc
= U2

3R .

Simple division now yields P ′ = 1
9P .

Kateřina Smítalová
katka@fykos.cz

Problem E.3 . . . ideal current
Consider an ideal current source. First, we connect to it three identical resistors in parallel and
find that the total power consumed by the resistors is P . What will the consumed power be if
we connect the resistors to the source in series? Compute the result as a multiple of P .

Karel was teaching about electric current.

When the resistors with identical resistances R are connected in parallel, their total resistance
is equal to R/3. When they are connected in series, it’s 3R (you can verify that yourselves).
In order to compute the power P of resistors connected in parallel, we’ll use the well-known
formula for power consumed by a resistor and Ohm’s law. We get

P = UI = RcI
2 = 1

3RI
2 ,

where I is the total current flowing through the circuit, U is the voltage of the source and Rc

is the total resistance of the circuit. The power P ′ of resistors connected in series is

P ′ = UI = RcI
2 = 3RI2 .
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Simple division now yields P ′ = 9P .

Kateřina Smítalová
katka@fykos.cz

Problem E.4 . . . loaded triangle
We built a triangle from three resistors with equal resistances and connected voltage sources
parallel to two of the resistors in such a way that their negative poles are connected to the same
vertex. How many times larger will the current flowing through the source with voltage 7U be
compared to the current flowing through the other source with voltage 5U?

Kuba forced Štěpán to make some problems instead of programming.

First, let’s perform the triangle-star transformation. We only need to realise that all resistances
are identical, so the resistors in the star will also be identical; let’s denote it by R.

We can now apply Kirchhoff’s laws. Let’s denote the current flowing through the source
with smaller voltage by I1, the current flowing through the larger source by I2 and the current
through the last resistor by I3. We assume that the currents flow through the sources in the
standard direction (we aren’t charging them). Then, we get the equation I1 + I2 = I3. (We
could get slightly different equations if we defined the currents in different directions, but the
final result will always be the same.)

For the first loop, we get I1R+ I3R = 5U and for the second one, I2R+ I3R = 7U . Solving
these three equations with three unknown variables, we find that I2 = 3U/R and I1 = U/R, so
the current flowing through the larger source is 3 times larger.

Štěpán Stenchlák
stenchlak@fykos.cz

Problem X.1 . . . a nice cup of tea
Somebody mixed the polonium-210 isotope (half-life 138 days) into Mikuláš’s tea. Luckily,
Mikuláš noticed that. However, he really wants some tea, so he measured the amount of ra-
dionuclide in his tea and calculated when will the radioactivity decrease to a safe-to-drink value.
After this time of 342 days he drank his tea with no side effects. A few years later, somebody
mixed twice the original amount of polonium-210 into his tea. How long does Mikuláš have to
wait this time? Guys, I really am not a retired Russian agent. . .

All we need is to recall the definition of half-life. Then it is clear that if we wait 138 days, the
new problem will reduce itself to the old one (i. e. the amount of the radionuclide will decrease
to the original value). Therefore, the waiting time will be 138 + 342 = 480 days.

Mikuláš Matoušek
mikulas@fykos.cz

Problem X.2 . . . cheesy
Vítek found a shop with suspiciously cheap cheese. On Monday at 14:15, he bought 250 g of
cheese there. On Tuesday at 17:21, he bought another 200 g and on Wednesday at 19:45, yet
another 160 g. He always stored the cheese he bought carefully in the fridge. Unfortunately,
he hadn’t noticed that the cheese contained the radioactive nuclide 24Na with half-life 15 hrs.
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The mass fraction of this substance in the cheese at the moment when the cheese is bought is
w = 0.0013. What will be the mass (in grams) of non-decayed 24Na in the cheese at the moment
when Vítek wants to eat it – on Thursday at 9:11? Jáchym was skipping through sale flyers.

Radioactive decay follows the equation

m′ = me− t
T

ln 2 ,

where m is the initial mass of the isotope and m′ is its mass at time t. The last variable in the
equation is half-life T .

Let’s denote the time period between the first sale and eating the cheese by t1 and the mass
of bought cheese by M1. The initial mass of the isotope in cheese is m1 = M1w. The mass of
the isotope after time t1 then is

m′
1 = m1e− t1

T
ln 2 = M1we− t1

T
ln 2 .

Similarly, we can compute the masses of the isotope in the other two pieces of cheese, which
we’ll denote by m′

2 and m′
3. The resulting mass is the sum of masses in individual pieces, which

is
m′

1 +m′
2 +m′

3
.= 0.168 g .

The mass of the non-decayed sodium isotope is 168 mg.

Jáchym Bártík
tuaki@fykos.cz

Problem X.3 . . . yoghurt
Jáchym eats half a kilogram of yoghurt for dinner every day. The yoghurt contains a mass
fraction w = 10−4 of a certain radioactive isotope with half-life 26 days. How many grams of
this isotope will be present in Jáchym’s body every day before dinner, if he’s been eating this
way for a long time? Assume that the isotope doesn’t leave his body in any way other than
through radioactive decay. Jáchym, eating a yoghurt.

Right before dinner, Jáchym contains mass m0 of this isotope. The yoghurt contains mass
∆m = wmj of the isotope, where mj is the mass of the yoghurt. After Jáchym eats the yoghurt,
the mass of the isotope he contains increases to m1 = m0 +∆m. During the following 24 hours,
this mass gradually decreases to the original value m0. We can use the formula for radioactive
decay

m0 = m1e−λt .

Substituting for m1, we get
m0 = (m0 + ∆m) e−λt .

Now, we can express

m0 = ∆m e−λt

1 − e−λt
.

The time period t has length 1 day and the radioactive decay constant λ satisfies

λ = ln 2
t 1

2

,
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where t 1
2

is the half-life. After plugging in all the numbers, we get m0
.= 1.85 g.

Jáchym Bártík
tuaki@fykos.cz

Problem X.4 . . . beer
The average volume ratio of air to beer in beer foam is 6.87. The half-life of an average bubble
is 73 s. If, initially, the beer reaches the height 13 cm above the bottom of the glass and the foam
reaches height 16.5 cm, what height (in centimetres) will the foam reach after two minutes?

Made up by Jáchym while watching a Czech cult film.

The beer reaches the height h1 and the foam h2. The initial height of foam is h0 = h2 − h1.
The decay of bubbles will proceed in the same way as radioactive decay – the height of foam
at time t is

h(t) = h0e− t
T

ln 2 ,

where T denotes the half-life. The beer and air released by this decay will have height hp and
hv respectively. We obtain the equation

hp + hv = h0 − h ,

1 + hv

hp
= h0 − h

hp
,

hp = h0 − h

k + 1 ,

where k = hv/hp is the given ratio of air to beer. The height which the foam will reach in the
glass can be computed as

H = h1 + hp + h = h1 + (h2 − h1) ke− t
T

ln 2 + 1
k + 1

.= 14.42 cm .

The foam will reach 14.42 cm from the bottom of the glass.

Jáchym Bártík
tuaki@fykos.cz
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